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ABSTRACT
This work presents a new approach for deobfuscating An-
droid APKs based on probabilistic learning of large code
bases (termed “Big Code”). The key idea is to learn a prob-
abilistic model over thousands of non-obfuscated Android
applications and to use this probabilistic model to deob-
fuscate new, unseen Android APKs. The concrete focus
of the paper is on reversing layout obfuscation, a popular
transformation which renames key program elements such
as classes, packages and methods, thus making it difficult to
understand what the program does.

Concretely, the paper: (i) phrases the layout deobfusca-
tion problem of Android APKs as structured prediction in
a probabilistic graphical model, (ii) instantiates this model
with a rich set of features and constraints that capture the
Android setting, ensuring both semantic equivalence and
high prediction accuracy, and (iii) shows how to leverage
powerful inference and learning algorithms to achieve over-
all precision and scalability of the probabilistic predictions.

We implemented our approach in a tool called DeGuard
and used it to: (i) reverse the layout obfuscation performed
by the popular ProGuard system on benign, open-source ap-
plications, (ii) predict third-party libraries imported by be-
nign APKs (also obfuscated by ProGuard), and (iii) rename
obfuscated program elements of Android malware. The ex-
perimental results indicate that DeGuard is practically ef-
fective: it recovers 79.1% of the program element names
obfuscated with ProGuard, it predicts third-party libraries
with accuracy of 91.3%, and it reveals string decoders and
classes that handle sensitive data in Android malware.

1. INTRODUCTION
This paper presents a new approach for deobfuscating

Android applications based on probabilistic models. Our
approach uses large amounts of existing Android programs
available in public repositories (referred to as “Big Code”)
to learn a powerful probabilistic model which captures key
features of non-obfuscated Android programs. It then uses
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this probabilistic model to suggest a (statistically likely) de-
obfuscation of new, obfuscated Android applications. Our
approach enables a variety of security applications. For in-
stance, our system successfully deobfuscates Android APKs
produced by ProGuard [6], the most popular obfuscation
tool for Android applications.

Focus: Layout Deobfuscation.
The focus of this paper is on reversing layout obfuscation

of Android APKs. While general obfuscation can include
other transformations (e.g., changes to the program’s data
representation or control-flow [25]), layout obfuscation re-
mains a key part of virtually all obfuscation tools. In layout
obfuscation, the names of program elements that carry key
semantic information are replaced with other (short) identi-
fiers with no semantic meaning. Examples of such elements
are comments, variable, method and class names. Renaming
these program elements makes it much harder for humans
to read and understand what the program does and is use-
ful in a variety of security scenarios including protection of
intellectual property.

Benefits and Challenges.
Among others, reversing layout obfuscation for Android

APKs has various benefits including: (i) it makes it easier
for security analysts to inspect Android applications obfus-
cated with ProGuard, (ii) it identifies third-party libraries
embedded in Android APKs, and (iii) it enables one to au-
tomatically search for certain identifiers in the code.

However, reversing layout obfuscation is a hard problem.
The reason is that once the original names are removed from
the application and replaced with short meaningless identi-
fiers, there is little hope in recovering the original names by
simply inspecting the application alone, in isolation.

Probabilistic Learning from “Big Code”.
To address challenges that are difficult to solve by consid-

ering the program in isolation, the last couple of years have
seen an emerging interest in new kinds of statistical tools
which learn probabilistic models from “Big Code” and then
use these models to provide likely solutions to tasks that
are difficult to solve otherwise. Examples of such tasks in-
clude machine translation between programming languages
[18], statistical code synthesis [32, 30], and predicting names
and types in source code [31, 9]. Interestingly, due to their
unique capabilities, some of these probabilistic systems have
quickly become popular in the developer community [31].

http://dx.doi.org/10.1145/2976749.2978422


This Work: Android Deobfuscation via “Big Code”.
Motivated by these advances, we present a new approach

for reversing Android layout obfuscation by learning from
thousands of readily available, non-obfuscated Android ap-
plications. Technically, our approach works by phrasing the
problem of predicting identifier names (e.g., class names,
method names, etc.) renamed by layout obfuscation as
structured prediction with probabilistic graphical models.
In particular, we leverage Conditional Random Fields (CRFs)
[23], a powerful model widely used in various areas includ-
ing computer vision and natural language processing. To our
knowledge, this is the first time probabilistic graphical mod-
els learned from “Big Code” have been applied to address a
core security challenge. Using our approach we present a
tool called DeGuard, and show that it can automatically
reverse layout obfuscation of Android APKs as performed
by ProGuard with high precision.

Main Contributions.
The main contributions of this paper are:

• A structured prediction approach for performing prob-
abilistic layout deobfuscation of Android APKs.

• A set of features and constraints cleanly capturing key
parts of Android applications. Combined, these ensure
our probabilistic predictions result in high precision
and preserve application’s semantics.

• A complete implementation of our approach in a scal-
able probabilistic system called DeGuard1.

• An evaluation of DeGuard on open-source Android
applications obfuscated by ProGuard and Android mal-
ware samples. Our results show that DeGuard is
practically effective: it correctly predicts 79.1% of the
program elements obfuscated by ProGuard, it iden-
tifies 91.3% of the imported third-party libraries, and
reveals relevant string decoders and classes in malware.

2. OVERVIEW
In this section we provide an informal overview of our

statistical deobfuscation approach for Android. First, we
discuss ProGuard, which is the most widely used tool for
obfuscating Android applications. We then present the key
steps of our DeGuard system. The purpose here is to pro-
vide an intuitive understanding of the approach. Full formal
details are presented in the later sections.

2.1 ProGuard
ProGuard obfuscates program elements including names

of fields, methods, classes, and packages, by replacing them
with semantically obscure names. It also removes unused
classes, fields, and methods to minimize the size of the result-
ing Android application package (APK) released to users.
ProGuard processes both the application and all third-party
libraries that the application imports (e.g., advertising and
analytics libraries). All third-party libraries imported by the
application are therefore concealed in the released APK.

ProGuard cannot obfuscate all program elements as that
would change the application’s semantics. For example, the
names of methods part of the Android API and the names
of classes referenced in static files, are kept intact.
1http://apk-deguard.com

Example.
Figure 1(a) shows a fragment of an Android application

that has been obfuscated with ProGuard (the obfuscated
program elements are highlighted with red). The depicted
code fragment can be easily obtained from the APK using
standard tools, such as Dex2Jar [2] and Java Decompiler [4].

Here, the name of the class is replaced with the non-
descriptive name a and similarly, the private field of type
SQLiteDatabase and the method returning a Cursor object
are renamed with the obscure names b and c, respectively.
It is evident that inspection of this code, as well as any other
code using the obfuscated class a, is challenging. For exam-
ple, the intended behavior of the following two lines of code
is concealed due to the non-descriptive class and method
names:

a obj = new a();

obj.c(str);

As mentioned, ProGuard keeps the names of some pro-
gram elements to preserve the application’s semantics. For
example, the name of the class SQLiteOpenHelper and its
methods getWritableDatabase and rawQuery are not re-
named because this class is part of the core Android API.

2.2 DeGuard
Given an Android APK as input, DeGuard outputs a se-

mantically equivalent Android APK with descriptive names
for fields, methods, classes, and packages. We depict the
source code of the output APK produced by DeGuard in
Figure 1(d). The key steps of our approach are shown with
thick gray arrows ( ) in Figure 1. We now describe these
steps.

Dependency Graph.
DeGuard analyzes the input APK and formalizes the

structure of the Android application as a graph over the
program elements, where an edge signifies that the corre-
sponding two program elements are related. The graph in
Figure 1(b) illustrates a fragment of the generated depen-
dency graph for our example.

The red circular nodes denote the unknown (i.e., obfus-
cated) program elements whose names the tool will try to

predict, and the purple rectangular nodes are the known

program elements, which will not be modified by the tool.
The name of the class a is therefore represented with a
red node, while the class SQLiteOpenHelper with a purple
one. The graph’s edges are labeled with a particular rela-
tionship, which represents how the two program elements
are related. For example, the edge from node a to node
SQLiteOpenHelper is labeled with the relationship extends
to formalize that the former class extends the latter. Since
program elements can have multiple relationships, the de-
pendency graph may in general contain multiple edges be-
tween two nodes (thus, technically, the dependency graph is
a multigraph).

Formally, the relationships between two nodes represent
different feature functions. The constructed dependency
graph, along with all feature functions specifies a Condi-
tional Random Field (CRF) [23], a powerful probabilistic
graphical model. We formally define the dependency graph,
feature functions, and CRFs in Section 3, and the features
for Android applications in Section 4.

http://apk-deguard.com


1 class a extends SQLiteOpenHelper {

2 SQLiteDatabase b ;
3 public a (Context context) {
4 super(context, "app.db", null, 1);

5 b = getWritableDatabase();
6 }
7 Cursor c (String str){

8 return b .rawQuery(str);
9 }

10 }

(a) An Android application obfuscated by ProGuard

Derive graph,
and constraints

1 class DBHelper extends SQLiteOpenHelper {

2 SQLiteDatabase db ;

3 public DBHelper (Context context) {

4 super(context, "app.db", null, 1);

5 db = getWritableDatabase();
6 }

7 Cursor execSQL (String str){

8 return db .rawQuery(str);
9 }

10 }

(d) Deobfuscated Android application using DeGuard

Rename
identifiers

aSQLiteOpenHelper

bgetWritableDatabase

extends

field-in

gets

C = { a 6= MainActivity , · · · }

(partial) Dependency graph:

Naming constraints:

(b) Dependency graph, features, and constraints

Predict

DBHelperSQLiteOpenHelper

dbgetWritableDatabase

extends

field-in

gets

name1 name2 weight

SQLiteOpenHelper DBUtils 0.3
SQLiteOpenHelper DBHelper 0.2

name1 name2 weight

DBUtils instance 0.5
DBHelper db 0.4
DBUtils db 0.2
DBHelper instance 0.2

name1 name2 weight

getWritableDatabase db 0.7
getWritableDatabase instance 0.4

(c) Graph with predicted unknown identifiers

Figure 1: Statistical deobfuscation of Android applications using DeGuard. The red color indicates the elements whose
names are to be renamed (in the input), the green color are the same elements with the new names (in the output), and the

purple color denotes the elements whose names are known and remain the same.

Syntactic and Semantic Constraints.
Given an Android APK, DeGuard automatically derives

a set of constraints which restricts the possible names as-
signed to the unknown program elements. These naming
constraints guarantee that the deobfuscated APK gener-
ated by DeGuard is: (i) a syntactically well-formed pro-
gram, and (ii) semantically equivalent to the input APK.
Two example constraints are: all fields declared in the same
class must have distinct names and all classes that belong
to the same package must have distinct names. Any well-
formed application must satisfy these two syntactic proper-
ties. Naming constraints of methods are more intricate due
to method overriding. For example, if a method in a sub-
class overrides a method in a superclass (in the input APK),
then the two methods must have the same name after de-
obfuscation to preserve the overriding property.

For example, suppose the package of class a also contains
a class with the (non-obfuscated) name MainActivity. The
constraint a 6= MainActivity in Figure 1(b) specifies that
the predicted name for node a must be distinct from the
name MainActivity. Indeed, if these two classes have iden-
tical names, then the resulting output APK would not be
syntactically well-formed.

In Section 5, we describe an algorithm that, for any APK,
generates all necessary syntactic and semantic constraints.

Probabilistic Prediction.
Using the derived dependency graph and constraints, De-

Guard infers the most likely names for all obfuscated ele-
ments. The predicted names for our example are depicted in

Figure 1(c). DeGuard predicts that the name of the obfus-
cated class a is DBUtils and that the name of the obfuscated
field b is db. Below, we describe how DeGuard concludes
that these are the most likely names for this example.

To predict the names of the obfuscated elements, De-
Guard performs a joint prediction that considers all pro-
gram elements, known and unknown. To illustrate this in-
ference step, consider the graph in Figure 1(c). The tables
associated with the graph’s edges represent the likelihood,
of each (pairwise) assignment of names to program elements
(nodes). We remark that each table is derived from feature
functions associated with weights, which together represent
(log-)likelihoods. We formally define feature functions and
explain the derivation of the likelihood tables in Section 3.
Here, we illustrate how these likelihood tables are used to
choose the most likely names. Our goal is to find an assign-
ment for all program elements that maximizes a score that
is the sum of the weights in each table.

For our example, according to the top-most table, the
weight of assigning the name DBUtils to the class is 0.3.
However, DeGuard does not select DBUtils as the name of
this class. This is because selecting the name DBUtils does
not result in the highest possible overall score. Suppose we
select the name DBUtils. Then, we have two possible names
for the obfuscated field b, namely db and instance. Accord-
ing to the likelihood tables, both the former and the latter
choice result in a total score of 1.2. However, if we select the
name DBHelper and db, then the total score is 1.3, which
is the highest possible score for this example. DeGuard
therefore returns these names as most likely.



Formally, DeGuard performs a Maximum a Posteriori
(MAP) inference query on the CRF model defined by the de-
pendency graph and the feature functions. We define MAP
inference in Section 3.

2.3 Security Applications
DeGuard can be used to tackle several practical security

problems. In our evaluation, we show that DeGuard can
effectively reverse ProGuard’s layout obfuscation for benign
Android APKs. Although ProGuard obfuscates 86.7% of the
program elements on average, DeGuard correctly predicts
the names for 79.1% of those elements.

Predicting libraries is another important problem, which
is particularly relevant for Android [14]. Mobile develop-
ers tend to rely on a large number of libraries which often
contain security vulnerabilities — from personal informa-
tion release [15, 11] to severe man-in-the-middle vulnerabil-
ities [1]. In our experiments, DeGuard reveals over 90% of
the third-party libraries concealed by ProGuard.

Further, numerous security analyses rely on descriptive
program identifiers. Examples include analyses that per-
form statistical filtering of potential vulnerabilities [37] and
probabilistic systems for detecting privacy leaks [11]. These
systems assume that the application’s program elements are
non-obfuscated. DeGuard can be used to deobfuscate ap-
plications before they are analyzed by such systems.

2.4 Challenges
We discuss three key challenges when building a prediction

system for deobfuscating Android applications:
(i) Capturing the rich structure of Android applications:

precisely encoding the structure of Android applications us-
ing a concise, yet adequate set of program elements and
relationships is important to ensure the predictions made
by the system are accurate. This is difficult as a large set
of relationships may hurt the scalability of the system while
missing important relationships, or defining bad ones, can
reduce the prediction accuracy.

(ii) Semantic equivalence: the rich structure of Java poses
nontrivial constraints that must be captured to ensure the
resulting deobfuscated Android APK has equivalent seman-
tics to the input APK.

(iii) Scalable learning : the expressive structure of An-
droid applications inevitably results in complex dependency
graphs and a large variety of features that cannot be han-
dled efficiently by off-the-shelf machine learning systems.
According to our experiments, the most scalable available
prediction system for programs [31] required an order of
magnitude longer than DeGuard to learn a probabilistic
model for Android.

2.5 Scope and Limitations
In this work, we focus on deobfuscating Android appli-

cations that have been transformed using layout obfusca-
tion mechanisms, which rename fields, methods, classes and
packages with semantically obscure names. Other obfusca-
tion techniques, such as data obfuscation mechanisms, which
alter data structures, control-flow and cryptographic obfus-
cation mechanisms fall outside the scope of this work. We
remark that malicious Android applications often uses mul-
tiple obfuscation techniques to prevent reverse engineering.
Security experts must thus use a combination of deobfusca-
tion tools to effectively deobfuscated Android malware.

3. BACKGROUND
In this section we provide the necessary background on

probabilistic models, queries, and learning which we leverage
in this work. These concepts are well known in the field of
probabilistic graphical models [20]. The main purpose here
is to review these parts and to illustrate how they are used
by our approach.

Problem Statement.
We phrase the problem of predicting the most likely names

assigned to all obfuscated program elements as a problem in
structured prediction. Intuitively, we model the elements
of a program as a tuple of random variables (V1, . . . , Vn)
ranging over a set of name labels Names. The set Names
in our case contains all possible names from which we can
choose to name program elements. Then, the joint distri-
bution P (V1, . . . , Vn) (discussed later in this section) over
these variables assigns a probability to each assignment of
names to variables.

Let ~O = (V1, . . . , V|~O|) be the variables representing obfus-
cated program elements, i.e., the variables whose names we
would like to predict. The names of the remaining variables
~K = (V|~O|+1, . . . , Vn) are known and will not be affected by
the renaming. Then, to predict the most likely names for the
obfuscated program elements, we compute the Maximum a
Posteriori (MAP) inference query:

~o = argmax
~o′∈Ω

P ( ~O = ~o′ | ~K = ~k)

where Ω ⊆ Names |~O| is the set of all possible assignments of

names to the obfuscated variables ~O, and ~k ∈ Names | ~K| de-
fines the names assigned to the known variables ~K. Next, we
describe how we actually represent and compute the condi-

tional probability P ( ~O = ~o | ~K = ~k) for a given assignment

of names ~k.

Dependency Graph.
A dependency graph for a given program is an undirected

multigraph G = (V,E), where V is a set of random variables
representing program elements and E ⊆ V ×V ×Rels is a set
of labeled edges. Here, Rels is a set of relationships between
program elements; we instantiate this set for Android appli-
cations in Section 4. An edge (Vi, Vj , rel) says that elements
Vi and Vj are related via rel . An example of a dependency
graph is shown in Figure 1(b).

Features and Weights.
We define a pairwise feature function ϕ as follows:

ϕ : Names ×Names × Rels → R

This function maps a pair of names and their relationship
to a real number. In Section 4, we define several kinds of
feature functions and based on these we obtain the entire set
of pairwise features {ϕ1, . . . , ϕm} automatically during the
learning phase (described at the end of this section). For
example, for each observed edge (Vi, Vj , rel) in the training
set of dependency graphs where the names assigned to Vi

and Vj are ni and nj , respectively, we define a pairwise
feature ϕ(N,N ′,Rel) = 1 if N = ni, N ′ = nj , and Rel =
rel ; otherwise, ϕi(N1, N2, rel) = 0. Further, for any ϕi, we
associate a weight wi, also computed during the learning
phase.



Given a dependency graph G = (V,E), a prediction ~o

for the obfuscated variables ~O, and an assignment ~k for the
fixed, known variables ~K, we associate a feature function fi
to each pairwise feature ϕi defined as follows:

fi(~o,~k) =
∑

(Vj ,Vl,rel)∈E

ϕi((~o,~k)j , (~o,~k)l, rel)

Here, (~o,~k)j denotes the jth name in the vector (~o,~k). We
can think of fi as lifting ϕi to quantify ϕi’s effect on all the
edges in the graph (i.e., adding up ϕi’s effect on each edge).
The end result computed by fi is a real number capturing
the overall effect of ϕi.

Conditional Random Fields.
A conditional random field (CRF) is a probabilistic model

which defines a conditional probability distribution, that is,

P ( ~O = ~o | ~K = ~k) as follows:

P ( ~O = ~o | ~K = ~k) =
1

Z
exp(

m∑
i=1

wifi(~o,~k)),

where each fi, 1 ≤ i ≤ m, is a feature function associated
with a weight wi, and Z is a normalization constant. We
do not define Z as it can be omitted for our specific type of
query.

It is then immediate that the dependency graph, together
with the feature functions f1, . . . , fm and their associated
weights w1, . . . , wm, define a CRF.

Prediction via MAP Inference.
To compute the most likely assignment ~o for the variables

~O, we perform a MAP inference query:

~o = argmax
~o′∈Ω

P ( ~O = ~o′ | ~K = ~k)

Using our CRF model, we can compute the probability of
an assignment ~o using the formula:

P ( ~O = ~o′ | ~K = ~k) =
1

Z
exp(

m∑
i=1

wifi(~o,~k))

We omit the constant Z (as it does not affect the result of

the MAP inference query), expand fi(~o,~k), and rewrite the
formula as follows:

P ( ~O = ~o′ | ~K = ~k) ∼

∼ exp(

m∑
i=1

wi

∑
(Vj ,Vl,rel)∈E

ϕi((~o,~k)j , (~o,~k)l, rel)) =

= exp(
∑

(Vj ,Vl,rel)∈E

m∑
i=1

wi ϕi((~o,~k)j , (~o,~k)l, rel))

We refer to the above as the total score of an assignment (~o,~k).

MAP Inference Example.
We now explain the above equation by referring to our ex-

ample from Section 2. The product wi ϕi((~o,~k)j , (~o,~k)l, rel)
scores a particular pairwise feature function ϕi. In our
example, each row in the tables given in Figure 1(c) de-
fines a pairwise feature function and its weight. Consider
the first row of the top-most table. This row denotes a
pairwise feature function which returns 1 if its inputs are

(SQLiteOpenHelper, DBUtils, extends) and 0 for all other
inputs. That feature function also has a weight of wi = 0.3,
which is determined during learning. We do not include the
type of relationship in the tables since in this example the
program elements are connected via a single relationship.
In our example, the MAP inference query will return the
assignment ~o highlighted in green (i.e., DBHelper and db)
as that assignment satisfies the constraints in Ω (in our ex-
ample we have a single inequality constraint) and the total
score of ~o is the highest: 0.2 + 0.4 + 0.7 = 1.3. To compute
this score, DeGuard implements a greedy MAP inference
algorithm which we describe in Section 6.1.

Learning from “Big Code”.
The input to the learning phase of DeGuard is a set

of p programs {〈~o(j),~k(j)〉}pj=1 for which both vectors of

names ~o and ~k are given. That is, the training data con-
tains non-obfuscated applications, which can be downloaded
from repositories for open-source Android applications, such
as F-Droid [3]. From this input, the learning outputs weights
{wi}mi=1 such that names in the training data programs are
correctly predicted. There are several variations of this
learning procedure [29, 20]. For our application we use learn-
ing with pseudo-likelihoods as described in [35, §5.4]. We
describe this algorithm in more detail in Section 6.1.

4. FEATURE FUNCTIONS
In this section, we present the pairwise feature functions

used for our Android deobfuscation task. As described ear-
lier in Section 3, these feature functions are used to build the
dependency graph. Recall that the construction of an appli-
cation’s dependency graph amounts to introducing a node
for each program element and then connecting the program
elements that are related. The signature of a dependency
graph is therefore defined by the application’s program ele-
ments and the relationships between them.

4.1 Program Elements
A program’s dependency graph is defined over nodes that

represent different program elements. To capture the struc-
ture of an Android application, we introduce nodes for each
of the following program elements:

• Types. We introduce a node for each primitive type
(e.g., int, long, float etc.), reference type (e.g., Object,
ArrayList, etc.), and array type (e.g., int[], Object[],
etc.) that appears in the application. For example,
we introduce a node to represent the reference type
SQLiteDatabase in the example of Figure 1(a).

• Fields. We introduce a node for each field declared in
the application’s classes. For example, we introduce a
node to represent the field of type SQLiteDatabase in
the example of Figure 1(a).

• Packages. We introduce a node for each package in
the application. For example, given a package a.b, we
introduce two nodes: one to represent the package a,
and another to represent the package a.b.

• Methods. We introduce a node for each method de-
clared in the application’s classes. For the example of
Figure 1(a), we introduce two nodes: one node to rep-
resent the constructor <init>() and another node for



the method c(). If a class overrides a given method,
we use one node to represent both the method declared
in the superclass and the one declared in the subclass.
This guarantees that overriding methods are renamed
consistently, which is necessary for preserving the ap-
plication’s semantics.

• Expressions. We introduce a node to represent con-
stant values (e.g., integers, strings, etc.) and the value
null. For example, we add a node 5 to capture the
constant value 5. Nodes for other kinds of constant
values are introduced analogously.

• Access Modifiers. We introduce nodes to repre-
sent access modifiers, such as static, synchronized,
private, protected, public, and so forth.

• Operations. We introduce nodes to represent opera-
tions (e.g., +, -, etc.).

We remark that we ignore generic types because they are
removed by the compiler during the type erasure process [7].
Furthermore, we ignore the names of local variables and
method parameters since they are not part of the applica-
tion’s APK. For example, we do not introduce a node to rep-
resent the method parameter’s name str of the method c()

in Figure 1(b). We do however capture the types of local
variables and method parameters, e.g. we capture that the
method c() has a parameter of type String.

Known and Unknown Program Elements.
We capture whether a node’s name is obfuscated and is

to be predicted, or is known and should not be predicted,
using the following set of rules:

• Nodes that represent packages, classes, methods, and
fields that are part of the Android API are known. For
example, the node of the class SQLiteOpenHelper in
our example is known because this class is part of the
Android API. All program elements that are part of
the Android API are referred by their name, and thus
any obfuscator keeps their names intact.

• Constructor methods (both dynamic and static) have
fixed names and are thus known.

• If a method overrides a known method (e.g., a method
that is part of the Android API), then the nodes repre-
senting both methods are known. We enforce this rule
implicitly by keeping a single node to represent both
methods. We explain this shortly.

• All remaining packages, classes, methods, and fields
are unknown.

Grouping Method Nodes.
In the context of inheritance and method overriding, intro-

ducing a node for each declared method leads to issues. The
reason is that the two methods must have the same signa-
ture, where a method’s signature is defined by the method’s
name along with the number and types of its parameters.
To guarantee that the deobfuscation is semantic-preserving,
we combine all methods related via inheritance in a single
node. We refer to the process of combining all such methods
as grouping.

To detect all overrides that occur in a given set of classes,
for each class we collect all of the methods it implements.
Then, for each of these methods, we link it with all the
methods it overrides. Finally, we combine all methods that
are (possibly indirectly) linked together into a single node.

4.2 Relationships
To capture the structure of an Android application, we

introduce relationships between its program elements. We
define all such relationships in Figure 2. The second column
in the table defines the type of each edge. For example, the
first edge type is (m, op, performs-op). This edge type says
that it connects a method m to an operation op with the re-
lationship performs-op. The third column specifies under
what condition the edge is added between two nodes (of the
correct type). The edge of the first type is added whenever
the method m performs an operation op. The types m and
op are the ones we already defined in Section 4.1. We or-
ganize the relationships into two broad categories: method
relationships and structural relationships.

Method Relationships.
Method relationships capture the semantic behavior of

methods. This is important because method names typically
describe the method’s behavior. For example, the method
name execSQL in our example of Figure 1 describes that this
method executes an SQL command. We remark on several
points pertaining to method relationships. First, the pro-
gram elements denoted by o, arg and v are not necessarily
fields. For example, the method call field.foo().bar() re-
sults in two edges of type receiver: (foo, bar, receiver)
and (field, foo, receiver). Second, for every loop occur-
ring in a method, we capture how different values and fields
are used within the loop using the relationships loop-read

and loop-write. To capture which classes are accessed by a
method, we introduce the relationship writes-classfield

and the relationship calls-classmethod.
Finally, we remark that the relationships defined above, in

addition to capturing the semantics of methods, also capture
how fields, classes and methods are used by the application.
For example, adding the information that method m reads
field f also conveys that f is read by m.

Structural Relationships.
The structural relationships capture the relations between

the nodes, such as whether two classes are defined within
the same package or not. These features are particularly
important for predicting obfuscated third-party libraries, as
the correct prediction of a small number of classes within
the library’s package significantly aids to accurately predict
the library’s remaining program elements. Note that for
method parameters, we express not only their type, but also
how often they occur. This is captured with the relation-
ship argtype-N. Further, we define the two relationships
read-before and written-before to capture the order of
reads and writes to fields.

Comparison to Other Prediction Systems.
Android applications have significantly more complex struc-

ture compared to programs encoded in, e.g., untyped, dy-
namic languages. Precisely capturing this structure is key to
enable the accurate prediction of Android applications. De-
Guard is the first prediction system for programs that sup-



Relationship Type Condition for Relating Two Program Elements

Method Relationships

(m, op, performs-op) method m performs operation op (e.g. addition +, xor, etc.)
Method (m, t, performs-cast) method m performs a cast to type t
operation (m, t, instance-of) method m performs an instanceof check for type t

(m, e, returns) method m returns an expression e (e.g. a field or a method call)

Reads and (m, e, uses) expression e appears in m
writes (m, f , writes) method m modifies field f

Arguments and (m, arg, flows-into) there is a call o.m(. . . , arg, . . .) with argument arg
receivers (o, m, receiver) there is a call o.m(. . .)

Loops (v, m, loop-read) method m uses the value v within a loop
(f , m, loop-write) method m writes to the field f within a loop

Accessed (m, c, writes-classfield) class c that contains a field that is read by m
Classes (m, c, calls-classmethod) class c that contains a method called by m

Structural Relationships

(e, p, contained-in-package) package p contains a class, a method, or a field e
Packages (p1, p2, direct-subpackage-of) package p1 that is directly contained within a package p2

(p1, p2, subpackage-of) package p1 is contained within a package p2, but not directly

(f , c, field-in) field f is declared in a class c
Classes (m, c, method-in) method m declared in a class c

(c1, c2, overrides) class c1 overrides a program element in class c2

(c, i, implements) class c that implements an interface i
(c1, c2, extends) class c1 extends class c2

(f , t, field-type) the type of field f is t
Types (m, t, return-type) method m that returns an object of return type t

(m, t, argtype-N) method m has N parameters of type t

Access modifiers (e, am, has-modifier) method or field e has access modifier am

(f , e, gets) assignment expression f = e (e.g. a field name or a method call)
Fields (f , e, initialized-by) there is an initialization statement statements f = e

(f1, f2, read-before) field f1 is read before field f2

(f1, f2, written-before) field f1 is written before field f2

Figure 2: Relationships used to relate the program elements of Android applications. The second column defines the edge
type (i.e. the program elements it related). Each relationship is added if the condition in the third column is true.

ports a rich set of structural relationships, including types,
structural hierarchies, and access modifiers. In our evalua-
tion, we show that DeGuard strikes a balance between the
accuracy and efficiency of prediction: the set of relationships
defined above are sufficient to accurately predict a significant
part (roughly 80%) of the program elements obfuscated by
ProGuard, while keeping the complete prediction time rea-
sonable (under a minute on average).

4.3 Pairwise Feature Functions
The pairwise features ϕi are derived from the relationships

defined above, based on the relationships observed in the
dependency graphs used in the learning phase. Formally, let
G1 = (V1, E1), . . . , Gm = (Vm, Em) be the set of dependency
graphs used in the learning phase with naming assignments.
For each edge (Vi, Vj , rel) ∈ E1 ∪ . . . ∪ Em that appears in
the dependency graphs, we define a pairwise feature

ϕi(N,N ′,Rel) =

{
1 if N = ni, N

′ = nj ,Rel = rel
0 otherwise

where ni and nj are the names assigned to the program
elements denoted by Vi and Vj . The pairwise features define

an indicator function for each pair of labels and kind of
relationship observed in the training set of non-obfuscated
programs. While the pairwise features are derived from the
training data, the weights associated to these features are
learned during the learning phase.

5. CONSTRAINTS
In this section we define the constraints that our deob-

fuscation mechanism must satisfy while renaming program
elements to ensure both syntactic and semantic validity of
the deobfuscated application. First, we describe method
naming constraints, which are more complex to define due
to method overrides. Afterwards, we describe naming con-
straints for fields, classes, and packages.

5.1 Naming Constraints for Methods
Method naming constraints are necessary for both seman-

tic reasons and for syntactic well-formedness. According to
Java’s semantics, whenever a class extends another class,
the method declared in the subclass overrides a method de-
clared in the super class if the two methods have the same



1 public class A {
2 public void a(A a) {}
3 public void b(Object o) {}
4 public void c() {}
5 }
6 public class B extends A {
7 public void g() {}
8 private int h() {}
9 }

10 public class C extends B {
11 public void x() {}
12 }

Figure 3: An example that illustrates different types of
method naming constraints

signature, i.e. the same name and list of parameter types.
Method overrides thus change the application’s semantics.
Further, all methods within the same class must have dis-
tinct signatures. Below, we give an example to illustrate
different kinds of method naming constraints. Afterwards,
we describe how DeGuard derives these constraints.

Example.
We illustrate method naming constraints with an example.

Consider the program in Figure 3. Here we have three classes
that exemplify different cases of method naming constraints.

The name of the method A.a(A) is not constrained by
any method declared in Figure 3 because it has a unique
list of parameter types. Here, the method A.a(A) is the
only method that has one parameter of type A. In contrast,
A.b(Object) cannot be renamed to equals, because then
it would override java.lang.Object.equals(Object) from
the Java standard library. This constraint is needed because
A implicitly extends Object and the list of parameter types
a matches that of the method equals declared in the class
Object.

The names of the methods B.g() and B.h() must be dis-
tinct even though their return types and access level mod-
ifiers are different. This is because neither the return type
nor the access level modifier is part of a method signature,
and therefore renaming both methods to the same name re-
sults in the same method signature.

The names of the methods B.g() and A.c() must be dis-
tinct due to the semantics of method overriding in the pres-
ence of inheritance. Here, the class B extends A. Therefore,
a potential change of the name of B.g() to that of A.c()

would result in overriding method A.c(). The names of the
methods B.h() and A.c() must be also distinct due to the
semantics of method overriding, even though B.h() is pri-
vate. The method C.x()’s name is not constrained by the
name of B.h() because B.h() is declared as private. Ac-
cording to Java’s semantics, no method may override private
methods.

Expressing Method Constraints.
Our example shows that in addition to equality constraints,

inequality constraints are also needed to formalize all nam-
ing properties of methods. Equality constraints can be han-
dled implicitly by representing methods that must have an
identical signature with one node in the dependency graph
(see Section 4). This guarantees that all such methods are
renamed consistently. Inequality constraints, necessary to
avoid accidental overrides due to inheritance, must be ex-

Algorithm 1 Detecting inequality constraints for method
names
1: function findConstraints
2: object ← java.lang.Object
3: handleClass(object, ∅)
4: end function
5: function handleClass(class, aboveMethods)
6: methods ← aboveMethods ∪ class.nonPrivateMethods()
7: reportConstraints(methods ∪ class.privateMethods())
8: subClasses ← classes that directly extend/implement class
9: for subClass ∈ subClasses do
10: handleClass(subClass, methods)
11: end for
12: end function
13: function reportConstraints(methods)
14: . Report all inequality constraints for methods
15: partitions ← partition methods by parameter types
16: for partition ∈ partitions do
17: report partition as an inequality constraint
18: end for
19: end function

plicitly specified. We specify inequality constraints as sets
of program elements that have distinct names.

Formally, let V = {V1, . . . , Vn} be the set of nodes in
the dependency graph. We define an inequality constraint
as a set of nodes C ⊆ V . An assignment ~y = (y1, . . . , yn)
of names to program elements satisfies the inequality con-
straint C if ∀Vi, Vj ∈ C. yi 6= yj . For example, to spec-
ify that the methods C.x() and B.g() must have distinct
names, we use the inequality constraint C = {C.x(),B.g()}.
Note that we define inequality constraint using sets of el-
ements whose elements must be pairwise distinct, as op-
posed to standard binary inequality constraints (e.g., C.x()
6= B.g()) because the encoding of the former is more concise.

Deriving Inequality Constraints for Methods.
We next describe how we derive inequality constraints

for methods. Without loss of generality, we treat inter-
faces identically to classes. The inequality constraints for
methods are derived using Algorithm 1. The function find-
Constraints calls handleClass with the class Object and
the empty set of method names (since Object has no su-
per classes). The recursive call on Line 10 reaches all other
classes as every class (transitively) extends Object.

The function handleClass(class, aboveMethods) reports
all inequality constraints for class, where the parameter
aboveMethods contains all methods that the methods de-
clared in class can potentially override.

The function reportConstraints reports the inequality
constraints for the methods contained in methods. To do
this, it first partitions the methods based on their parameter
types. All methods in a given partition must have distinct
names, because otherwise, they would have the same signa-
ture. On the other hand, no method is constrained by the
methods in the other partitions.

Result on the Example.
Here, we show the result of applying Algorithm 1 on the

program in Figure 3. For simplicity, we assume that A does
not extend java.lang.Object. More precisely, a call to
handleClass(A, ∅) results in the inequality constraints
{A.c(), B.g(), B.h()} and {A.c(), B.g(), C.x()}. Note
that we implicitly remove singleton inequality constraints
as these are always satisfied.



5.2 Naming Constraints for Fields, Classes, and
Packages

The deobfuscation mechanism must satisfy the following
properties: (i) any two packages contained in the same pack-
age must have distinct names, (ii) any two classes contained
in the same package must have distinct names, and (iii)
any two fields declared in the same class must have distinct
names. We remark that the types of fields are irrelevant for
naming constraints. This is because a field is referred to by
its name, and the type of a field is not part of this name.
This is in contrast to methods, which are called by their
signature and where the types of a method’s parameters are
part of the method’s signature.

For a given Android app, the naming constraints for fields,
classes, and packages, are formalized using inequality con-
straints in the same way we formalize the constraints for
method names. We derive all inequality constraints for fields,
classes, and packages, by iterating over all classes and pack-
ages and reporting inequality constraints as defined by the
above properties.

6. IMPLEMENTATION AND EVALUATION
In this section we describe the implementation of De-

Guard and the experiments we conducted with it.

6.1 The DeGuard System
We now present our DeGuard system, which is pub-

licly available at http://apk-deguard.com. DeGuard is im-
plemened using Soot [38], a framework for static analysis
of Java and Android applications. Given an Android APK,
Soot transforms it into an intermediate format (called Jim-
ple) that simplifies the analysis of the application. To con-
struct the application’s dependency graph, we use Soot’s
API to traverse all program elements.

To predict the names of all obfuscated elements for a given
application, DeGuard performs a MAP inference query
on the CRF model constructed from the application’s pro-
gram elements, the set of pairwise features (described in 4),
and the feature weights. Next, we describe how DeGuard
learns a probabilistic model (the pairwise features and their
weights) from non-obfuscated Android applications, and how
it uses this probabilistic model to predict likely names of ob-
fuscated program elements using MAP inference.

Feature Functions and Weights.
To learn all feature functions and weights, we downloaded

1784 non-obfuscated Android applications from F-Droid [3],
a popular repository for open-source Android applications.
Out of these 1784 applications, we randomly selected 100
which we intentionally left as our benchmark applications,
i.e., the ones we later use in our evaluation. We used the
remaining 1684 applications as our training set of applica-
tions.

The set of possible names assigned to obfuscated program
elements is drawn from the names observed in the training
set. The pairwise features ϕ1, . . . , ϕm are also derived from
the training set, as described in Section 4.3. The only com-
ponent missing in our probabilistic model are weights ~w =
[w1, . . . , wm] associated with the pairwise features. One way
to learn the weights is to use maximum likelihood estimation,
where the weights ~w are chosen such that the training data
has the highest probability. That is, we chose weights ~w

that maximize the probability P ( ~O = ~oj | ~K = ~kj), com-

puted as defined in Section 3, for all programs 〈~oj ,~kj〉 in
the training set. Unfortunately, computing the weights us-
ing precise maximum likelihood estimation is prohibitively
expensive in our context, due to the large number of nodes
and possible labels that can be assigned to them. DeGuard
therefore learns the weights using pseudo likelihood, which
approximates the conditional distribution P ( ~O | ~K) as the

product of the conditional distributions P (Oi | N(Oi), ~K)

of each unknown node Oi ∈ ~O conditioned on the node’s
neighbors N(Oi) and the known nodes ~K. For the complete
details on training using pseudo likelihoods see [35, §5.4].

Using the training described above, the training of this
model took about 2 hours on a 32-core machine with four
2.13GHz Xeon processors running Ubuntu 14.04 with 64-Bit
OpenJDK Java 1.7.0 51.

MAP Inference.
To predict likely names ~o to be assigned to all obfuscated

elements ~O, DeGuard computes the MAP inference query

~o = argmax
~o′∈Ω

P ( ~O = ~o′ | ~K = ~k)

where ~k are the names assigned to the known elements ~K.
For this step, we use the publicly available Nice2Predict
framework [5]. Nice2Predict computes the MAP query us-
ing a scalable, greedy algorithm, where names assigned to
obfuscated program elements are iteratively changed one-
by-one or in pairs until the score stops improving. At every
iteration, all naming constraints are checked for violations.
More details on this algorithm are provided in [31]. After
predicting the names for all obfuscated elements, DeGuard
renames them using the Soot API, and then constructs and
outputs the deobfuscated APK.

6.2 Experimental Evaluation
We now present our experiments with DeGuard. First,

we evaluate DeGuard’s accuracy on deobfuscating benign,
open-source applications obfuscated using ProGuard. Sec-
ond, we discuss our experience in inspecting malware sam-
ples deobfuscated using DeGuard.

6.2.1 ProGuard Experiments
We perform two tasks to evaluate DeGuard’s perfor-

mance on ProGuard-obfuscated applications. First, we mea-
sure DeGuard’s accuracy on predicting the names of pro-
gram elements obfuscated by ProGuard. Second, based on
the results of the first task, we report DeGuard’s accuracy
on the task of predicting the names of obfuscated third-party
libraries imported in the APK.

To conduct the above tasks, we obfuscated 100 benign ap-
plications from F-Droid. These are the 100 applications that
we intentionally did not use during the learning phase. For
all 100 applications, we enabled ProGuard obfuscation by
modifying their build files, without modifying ProGuard’s
obfuscation rules, which specify which elements are obfus-
cated. In our experiments, we use the non-obfuscated ver-
sions of the applications as an oracle to check whether De-
Guard correctly deobfuscates the program elements’ names
by renaming them to their original (i.e., non-obfuscated)
names.

http://apk-deguard.com
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Figure 4: Distribution of total number of neighbors over the
100 ProGuard-obfuscated Android applications.
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Figure 5: Distribution of known number of neighbors over
the 100 ProGuard-obfuscated Android applications.

ProGuard-obfuscated APKs.
In Figures 4 and 5 we show two relevant metrics that re-

veal the dependency structure of the 100 applications that
we obfuscated using ProGuard. The bar chart depicted in
Figure 4 shows the distribution of total number of neighbors.
This figure shows one bar for each neighborhood size, where
the bar’s height indicates the percentage of nodes that have
exactly that number of neighbors. For example, the fifth
bar indicates that the percentage of nodes with exactly 4
neighbors is around 22%. Similarly, the bar chart shown in
Figure 5 shows the distribution of known neighbors. The
data in these two figures reveals two key points about our
features: (i) the nodes are well-connected (99% of the nodes
have at least 3 neighbors), and (ii) most nodes have known
neighbors (99% have at least one known neighbor). That is,
our features lead to dependency graphs where informed pre-
diction seems possible (rather than graphs which are mostly
disconnected where there would be little or no flow into a
node whose name is to be predicted).

Task 1: Predicting Program Element Names.
For this task, we deobfuscated the 100 benchmark ap-

plications, which we previously obfuscated with ProGuard.
We remark that ProGuard, in addition to renaming pro-
gram elements, also removes some elements. For example,
it removes fields, methods, and classes that are not used
by the application. Hence, we evaluate whether DeGuard
correctly deobfuscates elements not removed by ProGuard.

Figure 6 shows the percentage of known elements (which
DeGuard does not try to reverse), correctly predicted el-
ements, and mis-predicted elements, averaged over all 100
applications deobfuscated by DeGuard. Each bar has three
segments, which represent the three kinds of program ele-
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Figure 6: Average percentage of known, correctly predicted,
and mis-predicted program elements calculated over the 100
Android applications deobfuscated by DeGuard.

ments: (i) known, which are the elements not obfuscated
by ProGuard and which the system keeps as is, (ii) correct,
which are the elements that DeGuard correctly renames to
their original names, and (iii) mis-predicted, which are the el-
ements for which DeGuard predicts names that differ from
the original ones. Here, the first four bars show data about
fields, methods, classes, and packages, respectively, and the
fifth bar shows the aggregate data for all program elements.
We use the predictions made for the package names in the
second task discussed in this section.

The data shows that ProGuard obfuscates a substantial
number of the program elements. On average, only 1.6% of
the fields, 33% of the methods, 9.4% of the classes, and 9.3%
of the packages are known. Thus, on average, ProGuard
obfuscates 86.7% of each application’s program elements.

The data further shows that DeGuard correctly deobfus-
cates a significant part of the obfuscated program elements.
For example, while only 1.6% of the fields in the obfus-
cated applications are known, after DeGuard deobfuscates
them, 80.6% of all fields have names identical to the origi-
nal ones. We remark that 80.6% is a lower bound on how
well DeGuard deobfuscates fields. This is because some
of the names classified as mis-predicted are semantically
close to the original ones. For example, in the application
FacebookNotifications, DeGuard suggested appView and
mWindowManager as names for two fields, while the original
names are webview and windowManager, respectively.

Overall, the data shows that among all program elements,
DeGuard increases the percentage of names that are identi-
cal to the original ones from 13.3% (in the obfuscated APK)
to 79.1% (in the deobfuscated APK). We remark that the ap-
plications used in this experiment are benign. DeGuard’s
prediction accuracy on malicious applications may therefore
be lower.

Task 2: Predicting Third-party Libraries.
We next use the deobfuscation results for package names

obtained from Task 1 in order to evaluate DeGuard’s effec-
tiveness for predicting third-party libraries.

We first explain what we mean by the term library. We
identify libraries by their package names. We classified pack-
age names into library and application-specific using a sim-
ple heuristic: any package name that appears in multiple
applications is classified as corresponding to a library. This
heuristic works well because most application-specific pack-



1 public final class d {
2 private String a =
3 System.getProperty("line.separator");

4 private char[] b ;
5 private byte[] c ;
6
7 public static byte[] a (String str) {...};
8 }

(a) Obfuscated code

1 public final class Base64 {

2 private String NL =
3 System.getProperty("line.separator");

4 private char[] ENC ;

5 private byte[] DEC ;
6

7 public static byte[] decode (String str) {...};
8 }

(b) Deobfuscated code

Figure 7: Deobfuscating the Base64 decoder found in the
GingerMaster malware sample.

age names are unique to a particular application. For ex-
ample, org.apache.commons.collections4 is classified as
a library, while com.pindroid.providers is classified as an
application-specific package name. Based on our heuristic,
we identified a total of 133 libraries imported in the APKs.

To measure DeGuard’s effectiveness in predicting libraries
we use two (standard) metrics — precision and recall. Let
L denote the set of all obfuscated libraries imported by an
application and P denote the set of predicted libraries by
DeGuard. Here, P contains all package names that map to
one of the 133 names that we have previously classified as
libraries. We compute DeGuard’s precision using the for-
mula precision = |L ∩ P |/|P |, and recall using the formula
recall = |L ∩ P |/|L|. Intuitively, precision shows the per-
centage of libraries that DeGuard correctly predicts, and
recall captures the percentage of libraries that DeGuard
attempts to predict.

DeGuard’s precision and recall for predicting libraries is,
on average, 91.3% and 91.0%, respectively. This result indi-
cates that DeGuard predicts libraries more accurately com-
pared to arbitrary program elements. Further, DeGuard
almost never mis-predicts a library. This is likely because
the training set, which we use to learn the weights of all
features, may contain applications that import the same li-
braries that we attempt to predict.

We remark that the benchmark applications in this ex-
periment are not malicious, and so the libraries that they
import are also benign. Malicious third-party libraries em-
bedded in applications can be more difficult to identify.

Prediction Speed.
For most applications, DeGuard takes on average less

than a minute to deobfuscate its APK. Around 10% of the
time is spent in constructing the dependency graph and de-
riving all syntactic and semantics constraints. The remain-
ing 90% of the time is spent in computing the most likely
naming assignment using the approximate MAP inference
query. An interesting future work item is to investigate
faster MAP inference algorithms leveraging the specifics of
our dependency graphs.

1 public class SearchOfficesView extends BaseView {
2 private void g () {

3 m = getSystemService("location");
4 local = m .getBestProvider(...);
5 o = m .getLastKnownLocation(local);
6 ...
7 }
8

9 private void j () {...}

10 }
(a) Obfuscated code

1 public class SearchOfficesView extends BaseView {

2 private void init () {

3 locationManager =getSystemService("location");

4 local = locationManager .getBestProvider(...);

5 location =

6 locationManager .getLastKnownLocation(local);

7 ...
8 }
9

10 private void requestLocationUpdates () {...}

11 }
(b) Deobfuscated code

Figure 8: Deobfuscating fields and methods that store and,
respectively, handle location data. The code snippet is taken
from the Bgserv malware sample.

Summary of ProGuard Experiments.
In summary, our experiments demonstrate that: (i) De-

Guard correctly predicts an overwhelming part of the pro-
gram elements obfuscated by ProGuard, thereby effectively
reversing ProGuard’s obfuscation mechanism; (ii) it pre-
cisely identifies third-party Android libraries, and (iii) it is
robust and efficient, taking on average less than a minute
per application.

6.2.2 Experiments with Malware Samples
We randomly selected one sample from each of the 49 mal-

ware families reported in [40]. We used DeGuard to deob-
fuscate the selected samples and manually inspected some
of them. While we cannot report DeGuard’s exact preci-
sion on the selected samples (since they are all obfuscated),
we report on several interesting examples that suggest that
DeGuard can be useful when inspecting malware. We also
discuss DeGuard’s limitations in the context of malware.

Revealing Base64 String Decoders.
Malware often disguises text strings using the Base64 en-

coding scheme. DeGuard can be used to discover the classes
that implement such standard encoding schemes. Concretely,
DeGuard discovered the Base64 decoders in three of the
malware samples that we inspected. We remark that eight
other samples also have Base64 decoders, but the classes
that implement this encoding are not obfuscated.

As an example, in Figure 7 we show code snippets taken
from the GingerMaster [39] malware sample2. Figure 7(a)
shows the obfuscated code, and Figure 7(b) the correspond-
ing deobfuscated code obtained using DeGuard. DeGuard
discovers that the class d implements a Base64 decoder and

2SHA1: 2e9b8a7a149fcb6bd2367ac36e98a904d4c5e482



renames it to Base64. Further, DeGuard reveals that the
method a(String) decodes strings formatted in Base64 (we
confirmed this by inspecting the implementation of method
a(String)) and renames it to decode(String). The state-
ment Base64.decode(String) is more descriptive compared
to d.a(String), and we thus believe that DeGuard can
help security analysts in inspecting this malware sample.

Revealing Sensitive Data Usage.
Malware often steals personal information, such as loca-

tion data, device identifiers, and phone numbers. We search
the deobfuscated code of our malware samples for identi-
fiers such as location and deviceId and discovered that
DeGuard often deobfuscates the names of fields that store
sensitive data and methods that handle sensitive data. As
an example, in Figure 8 we show an obfuscated code snip-
pet taken from the Bgserv malware sample3, along with
the deobfuscated code output by DeGuard. We observe
that DeGuard renames the obfuscated field o, which stores
the device’s location, to location. Further, it renames
the method j() to requestLocationUpdates(). We in-
spected the method j() to reveal that it instantiates the
interface LocationListener and implements the method
onLocationChanged() to receive location updates. The name
requestLocationUpdates() assigned by DeGuard captures
the behavior of this method.

In the remaining malware samples, we discovered that De-
Guard renames a number of fields and methods that handle
other kinds of sensitive data, such as device identifiers. We
believe that DeGuard can help in inspecting malware that
misuses sensitive data, e.g., by allowing security experts to
search for certain identifiers in the deobfuscated code.

Limitations.
In addition to obfuscating program identifiers, most of

malware samples we inspected are obfuscated with addi-
tional techniques to further hinder reverse engineering. Ex-
amples include custom encoding of strings (e.g. using cus-
tom encryption), extensive use of reflection, control flow ob-
fuscation, code reordering using goto statements, and oth-
ers. Reversing these additional obfuscation steps is beyond
the scope of DeGuard. To inspect malware, security ana-
lysts must therefore use a combination of deobfuscation tools
tailored to reversing different obfuscation techniques.

7. RELATED WORK
This section summarizes the works that are most closely

related to ours.

Suggesting names for program elements.
Several works have studied the effect of identifier names [36,

33, 12] and have shown that good names have significant im-
pact on one’s ability to understand the source code. These
studies have inspired tools [13, 33] that rename identifiers
within a project to make them follow a given coding con-
vention. In contrast to DeGuard, the systems presented
in [13] and [33] cannot be used for deobfuscation. The
tool described in [13] relies on the names to be replaced to
have meaningful, non-obfuscated names, so it can improve
them. This system cannot predict meaningful replacements
of names such as “a”. The tool of [33] does not suggest
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new names: it only identifies bad names based on syntactic
guidelines and provides that feedback to developers.

The works of Allamanis et al.[8, 9] suggest names for Java
program elements using n-gram language models and neural
networks. Their technique, however, only allows predicting
the name of a single program element and is thus not appli-
cable to a deobfuscation task where most names are missing.

LibRadar [26] detects third-party Android libraries by ex-
tracting a unique fingerprint from each library and creating
a mapping from fingerprints to library names. Obfuscated
libraries are then identified by their fingerprints. In contrast
to DeGuard, LibRadar is less general as it predicts names
only for packages, and it is less robust because it relies on
stable features (i.e., completely unaffected by obfuscation).

Probabilistic models for programs.
A recent surge in the number of open-source repositories

has triggered several authors to create large-scale probabilis-
tic models for code. These models are then used for novel ap-
plications such as code completion [32], generating code from
natural language [17, 10], sampling code snippets [27], pro-
gramming language translation [18], type annotating pro-
grams [19, 31] and others.

Closest to our work is [31] which also uses structured pre-
diction and the Nice2Predict framework [5] to guess names
of local variables for JavaScript programs. Our setting how-
ever is different and requires more diverse feature functions,
constraints and range of elements for which names are to
be predicted; further, we use an order of magnitude more
scalable learning mechanism than [31].

Several works [22, 21, 16, 24] use graphical models to dis-
cover properties about programs such as function specifi-
cations and invariants. These works, however, do not use
MAP inference to discover overall optimal solutions for all
predicted properties (and most do not learn from existing
programs). The work of Shin et al. [34] uses neural networks
and a large training set to identify libraries in binaries. In
the context of Android, a recent paper by Octeau et al. [28]
uses a probabilistic model and static analysis to determine
if two applications may communicate via the Android intent
mechanisms. However, theirs is a rather different task than
the one addressed by our work.

8. CONCLUSION
We presented a new approach for layout deobfuscation

of Android APKs. The key idea is to phrase the problem
of reversing obfuscated names as structured prediction in a
probabilistic graphical model and to leverage the vast avail-
ability of non-obfuscated Android programs to learn this
model. We implemented our approach in a system called
DeGuard and demonstrated that DeGuard can success-
fully and with high precision reverse obfuscations performed
by ProGuard, a task beyond the reach of existing systems.
We believe that our work indicates the promise of leveraging
probabilistic models over “Big Code” for addressing impor-
tant challenges in security.
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